Structure of the Neuroleptic Drug N-[(l-Allyl-2-pyrrolidinyl)methyl]-6-methoxy-1H-benzotriazole-5-carboxamide Hydrochloride (Alizapride)

By H. L. De Winter, N. M. Blaton, O. M. Peeters and C. J. De Ranter*
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Instituut voor Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

(Received 21 April 1989; accepted 1 August 1989)

Abstract

C}_{16} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}^{+} . \mathrm{Cl}^{-}, M_{r}=351 \cdot 5\), monoclinic, $P 2_{1} / c, \quad a=8.8439$ (7), $\quad b=16.6827$ (9), $\quad c=$ $12 \cdot 2196(10) \AA, \beta=92 \cdot 510(6)^{\circ}, V=1801 \cdot 2(2) \AA^{3}, Z$ $=4, \quad D_{m}=1.29, \quad D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Ni-filtered $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA, \mu=2.045 \mathrm{~mm}^{-1}$, $F(000)=744, T=293 \mathrm{~K}$. Final $R=0.052$ for 2281 unique observed reflections. The benzamide moiety is planar. This planar conformation is stabilized by an intramolecular hydrogen bond which is typical for most o-methoxybenzamides. The folded conformation of the pyrrolidine side chain is stabilized by an intramolecular hydrogen bond between $\mathrm{H}(14)$ and Cl . Part of the pyrrolidine ring seems to be disordered.

Introduction. Alizapride belongs to the pharmacological class of neuroleptic drugs and acts, like sulpiride, by blocking the dopamine D_{2}-receptor (Kebabian \& Calne, 1979). The present investigation is part of a study examining the structural requirements for the blocking action.

Experimental. Colorless crystals from an ethanolether solution, $1.37 \times 0.15 \times 0.15 \mathrm{~mm}$. Density measured by flotation in n-heptane $/ \mathrm{CCl}_{4}$. Weissenberg photograph shows systematically absent reflections $h 0 l$ with l odd and $0 k 0$ with k odd. Hilger \& Watts computer-controlled diffractometer, cell constants by least-squares refinement of the setting angles of 24 reflections with $15<\boldsymbol{\theta}<25^{\circ}, \boldsymbol{\omega} / \boldsymbol{\theta}$ scan, $[(\sin \theta) / \lambda]_{\text {max }}$ $=0.5877 \AA^{-1}, 0 \leq h \leq 9,-19 \leq k \leq 19,-14 \leq l \leq$ 14. Intensities were corrected by linear scaling for average decrease ($+1.9 \%$ was the maximum correction) in intensity of four standard reflections (020 , $300,002,223$) monitored every 50 reflections. From the 6959 reflections measured, 2281 unique were considered observed with $I>3 \sigma(I), \quad R_{\text {int }}=0.022$. Lorentz and polarization corrections, absorption corrections by the method of North, Phillips \& Mathews (1968) based on one reflection (300). Scattering factors for the non-H atoms from Cromer \&

[^0]0108-2701/90/040667-03\$03.00

Waber (1974), while for H from Stewart, Davidson \& Simpson (1965). Anomalous-dispersion corrections were included for all non-H atoms (lbers \& Hamilton, 1964). The structure was solved by mULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). The E map calculated from the solution with the best figure of merit showed 23 of the 24 non- H atoms. The remaining $\mathrm{C}(17)$ was obtained from a subsequent Fourier synthesis. Refined on F by full-matrix least squares, first with isotropic temperature factors and then anisotropically. All but four H atoms were found in a difference synthesis and they were included in the refinement with fixed isotropic temperature factors of their parent atoms. $\mathrm{H}(12 A)$, $\mathrm{H}(12 B), \mathrm{H}(17 A)$ and $\mathrm{H}(17 B)$ were placed on their calculated positions with a riding distance of $0.95 \AA$ and fixed isotropic temperature factors of their parent atoms. Final $R=0.052, w R=0.058$, with $w=$ $4 F^{2} /\left[\sigma^{2}\left(F^{2}\right)+\left(0 \cdot 02 F^{2}\right)^{2}\right], S=3 \cdot 2$. Largest parameter shift/e.s.d. $=0 \cdot 16$. Min. and max. residual electron density -0.30 and $0.22 \mathrm{e} \AA^{-3}$. The number of reflections per refined variable was $2281 / 271=8.4$. All calculations were performed on a PDP11/73 microcomputer using SDP (Enraf-Nonius, 1982) and PARST (Nardelli, 1983).

Discussion. Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1. \dagger Bond lengths, bond angles and selected torsion angles are given in Table 2. A PLUTO plot (Motherwell \& Clegg, 1978) of the molecule, with the adopted numbering scheme, is shown in Fig. 1.

The molecule adopts a folded conformation reflected by the gauche conformation of the $\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(14)$ chain [torsion angle

[^1]Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cl	$0 \cdot 15525$ (8)	$0 \cdot 36130$ (5)	0.93580 (6)	684 (2)
C(1)	$0 \cdot 1928$ (3)	0.5083 (2)	0.5639 (2)	546 (8)
C(2)	$0 \cdot 1044$ (3)	$0 \cdot 5504$ (2)	$0 \cdot 6420$ (2)	533 (8)
C(3)	0.0587 (3)	$0 \cdot 6278$ (2)	0.6238 (2)	550 (8)
C(4)	0.1009 (3)	0.6643 (2)	0.5283 (2)	533 (8)
C(5)	0.1896 (3)	0.6256 (2)	0.4529 (2)	601 (8)
C(6)	0.2342 (3)	$0 \cdot 5473$ (2)	0.4714 (2)	623 (9)
C(7)	$0 \cdot 2431$ (3)	0.4220 (2)	0.5741 (2)	621 (9)
N(8)	$0 \cdot 2051$ (3)	0.3789 (1)	0.6597 (2)	602 (6)
C(9)	0.2393 (4)	$0 \cdot 2938$ (2)	$0 \cdot 6684$ (3)	654 (9)
C(10)	0.3988 (4)	0.2739 (2)	0.7040 (3)	646 (9)
C(11)	0.4292 (5)	0.1849 (2)	0.7138 (3)	1045 (13)
C(12)	0.5441 (6)	$0 \cdot 1760$ (2)	$0 \cdot 8014$ (3)	1130 (13)
C(13)	0.5204 (4)	$0 \cdot 2393$ (2)	0.8808 (3)	799 (11)
N(14)	0.4427 (3)	$0 \cdot 3063$ (2)	0.8172 (2)	579 (6)
C(15)	0.5335 (4)	$0 \cdot 3817$ (2)	$0 \cdot 8152$ (3)	704 (10)
C(16)	0.5650 (4)	$0 \cdot 4147$ (2)	0.9244 (3)	915 (11)
C(17)	0.6989 (5)	0.4273 (3)	0.9687 (4)	1256 (13)
O(18)	0.0723 (2)	$0 \cdot 5091$ (1)	0.7335 (2)	709 (6)
C(19)	-0.0146 (4)	0.5478 (2)	0.8147 (3)	826 (10)
$\mathrm{N}(20)$	0.0786 (3)	0.7378 (1)	0.4852 (2)	645 (8)
$\mathrm{N}(21)$	0.1443 (3)	0.7450 (2)	0.3881 (2)	793 (9)
N(22)	0.2131 (3)	0.6778 (2)	0.3681 (2)	794 (9)
$\mathrm{O}(23)$	$0 \cdot 3156$ (3)	$0 \cdot 3922$ (1)	$0 \cdot 5007$ (2)	899 (8)

Table 2. Bond lengths (\AA), bond angles (${ }^{\circ}$) and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

C(1)	C(2)			1.442 (4)	$\mathrm{C}(9)$		$\mathrm{C}(10)$		1.497 (4)
C(1)	$\mathrm{C}(6)$			1.368 (4)	C(10)		C(11)		1.518 (5)
C(1)	C(7)			1.511 (4)	C(10)		N(14)		1.519 (4)
C(2)	C(3)			1.371 (4)	C(11)		C(12)		1.460 (6)
C(2)	$\mathrm{O}(18)$			1.355 (3)	C(12)		C(13)		1.450 (5)
C(3)	C(4)			1.382 (4)	C(13)		N(14)		1.507 (5)
C(4)	C(5)			1.393 (4)	N(14)		C(15)		1.490 (4)
C(4)	N (20)			1.346 (4)	C(15)		C(16)		1.462 (5)
C(5)	C(6)			1.383 (4)	C(16)		C(17)		1-309 (6)
C(5)	$\mathrm{N}(22)$			1.375 (4)	O(18)		C(19)		1.434 (4)
C(7)	N(8)			1.326 (4)	N(20)		N(21)		1.349 (4)
C(7)	O(23)			$1 \cdot 229$ (4)	N(21)		$\mathrm{N}(22$		$1 \cdot 303$ (4)
N(8)	C(9)			1.452 (4)					
C(2)	$\mathrm{C}(1)$		C(6)	119.2 (3)	C(7)	N (8)		C(9)	121.8 (2)
C(2)	$\mathrm{C}(1)$		C(7)	$125 \cdot 2$ (2)	N(8)	C(9)		C(10)	$115 \cdot 3$ (2)
C(6)	C(1)		C(7)	115.7 (2)	C(9)	C(10)		C(11)	113.6 (3)
C(1)	C(2)		C(3)	121.3 (2)	C(9)	C(10)		N(14)	112.6 (2)
C(1)	C(2)		$\mathrm{O}(18)$	116.0 (2)	C(11)	C(10)		N(14)	$103 \cdot 6$ (2)
C(3)	C(2)		$\mathrm{O}(18)$	122.8 (2)	C(10)	$\mathrm{C}(11)$		C(12)	$106 \cdot 3$ (4)
C(2)	C(3)		C(4)	117.4 (2)	C(11)	$\mathrm{C}(12)$		C(13)	$106 \cdot 8$ (3)
C(3)	C(4)		C(5)	122.5 (3)	C(12)	$\mathrm{C}(13)$		N(14)	106.7 (3)
C(3)	C(4)		N(20)	133.7 (3)	C(10)	$\mathrm{N}(14)$		C(13)	$107 \cdot 3$ (2)
C(5)	C(4)		N(20)	103.9 (2)	C(10)	$\mathrm{N}(14)$		(15)	$113 \cdot 5$ (2)
C(4)	C(5)		C(6)	119.7 (3)	C(13)	$\mathrm{N}(14)$		(15)	113.6 (2)
C(4)	C(5)		N(22)	108.3 (3)	N(14)	C(15)		C(16)	112.7 (3)
C(6)	C(5)		N(22)	132.1 (3)	C(15)	C(16)		C(17)	$125 \cdot 5$ (4)
C(1)	C(6)		C(5)	$120 \cdot 1$ (3)	C(2)	O(18)		(19)	118.7 (2)
C(1)	C(7)		N(8)	119.8 (3)	C(4)	$\mathrm{N}(20)$		N(21)	111.3 (2)
C(1)	C(7)		O(23)	119.0 (3)	N(20)	$\mathrm{N}(21)$		N(22)	108.0 (2)
N(8)	C(7)		O(23)	$121 \cdot 1$ (3)	C(5)	$\mathrm{N}(22)$		N(21)	108.5 (3)
C (2)	C(1)	$\mathrm{C}(7)$	$\mathrm{O}(23)$	178.3 (3)	$\mathrm{N}(14)$	C(10)	C(11)	$\mathrm{C}(12)$	-25.1 (4)
C(1)	C(2)	$\mathrm{O}(18)$	$\mathrm{C}(19)$	179.6 (2)	C(10)	$\mathrm{C}(11)$	$\mathrm{C}(12)$	C(13)	31.8 (4)
C (7)	$\mathrm{N}(8)$	C(9)	$\mathrm{C}(10)$	79.1 (3)	C(11)	$\mathrm{C}(12)$	C(13)	$\mathrm{N}(14)$	-25.2 (4)
$\mathrm{N}(8)$	C(9)	$\mathrm{C}(10)$	$\mathrm{C}(11)$	178.8 (3)	C(12)	$\mathrm{C}(13) \mathrm{N}$	$\mathrm{N}(14)$	$\mathrm{C}(10)$	9.0 (3)
C(9)	C(10)	C(11)	$\mathrm{C}(12)$	-147.7 (3)	C(12)	$\mathrm{C}(13) \mathrm{N}$	$\mathrm{N}(14)$	$\mathrm{C}(15)$	-117.2 (3)
C(9)	C (10)	$\mathrm{N}(14)$	C(13)	$133 \cdot 0$ (2)	C(13)	$\mathrm{N}(14)$	C(15)	$\mathrm{C}(16)$	-61.4 (3)
C(9)	$\mathrm{C}(10)$	$\mathrm{N}(14)$	C(15)	-100.7 (3)	$\mathrm{C}(10)$	$\mathrm{N}(14)$	C(15)	C(16)	175.8 (3)
$\mathrm{C}(11)$	$\mathrm{C}(10)$	$\mathrm{N}(14)$	C(13)	9.8 (3)	$\mathrm{N}(14)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	C(17)	120.4 (4)
C(11)	$\mathrm{C}(10)$	$\mathrm{N}(14)$	C(15)	$136 \cdot 1$ (3)					

$\left.61 \cdot 3(3)^{\circ}\right]$; the dihedral angle formed by the weighted least-squares planes through the aromatic and pyrrolidine rings is $51.0(1)^{\circ}$.

For this pyrrolidine ring we calculated, using the method of Cremer \& Pople (1975), a phase angle φ_{2} $=52.2(6)^{\circ}$, indicating a twisted conformation, and a puckering amplitude $q_{2}=0.287$ (4) \AA for the sequence $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(14)$. This amplitude is significantly smaller than the $0.38 \dot{\AA}$ of a normal pyrrolidine ring (Pfafferott, Oberhammer, Boggs \& Caminati, 1985); the $\mathrm{C}(11)-\mathrm{C}(12)$ and $\mathrm{C}(12)-\mathrm{C}(13)$ bond lengths of $1 \cdot 460(6)$ and 1.450 (5) \AA respectively are short, and the thermal parameters of $\mathrm{C}(11), \mathrm{C}(12)$ and $\mathrm{C}(13)$ are unusually large. Therefore, we suspect the pyrrolidine ring to be partially disordered.

The aromatic ring atoms are only slightly displaced from the least-squares plane [max. deviation is 0.008 (3) \AA for $\mathrm{C}(1)$ and $\mathrm{C}(4)$]. The dihedral angle between the least-squares planes of the aromatic ring and the triazole ring is $0.4(1)^{\circ}$, with a maximum deviation of 0.018 (3) \AA out of the aromatic plane for $\mathrm{N}(21)$. The methyl group of the methoxy moiety has an out-of-plane deviation of only 0.060 (3) \AA, which is in contrast with the $1 \cdot 166$ (7) \AA of eticlopride (Wägner, Stensland, Csöregh \& De Paulis, 1985), but in quite good agreement with most of the other o-methoxybenzamides, such as sulpiride (Blaton, Peeters, De Ranter, Denisoff \& Molle, 1981) and tiapride (Blaton, Peeters, De Ranter, Denisoff \& Molle, 1982). The plane through the amide moiety forms a dihedral angle of $3.8(3)^{\circ}$ with the aromatic plane.

The intra- and intermolecular hydrogen bonds which determine the conformation of the molecule are summarized in Table 3. One intramolecular hydrogen bond links $\mathrm{H}(8)$ with $\mathrm{O}(18)$ and forms a typical additional six-membered pseudo-ring which is fused with the aromatic ring.

Fig. 1. A PLUTO plot showing the numbering scheme and intramolecular hydrogen bonds (indicated by dashed lines).

Table 3. Geometry of intra- and intermolecular hydrogen bonds with e.s.d.'s in parentheses

$X-\mathrm{H} \cdots \boldsymbol{Y}$	$\mathbf{H} \cdots Y(\AA)$	$X \cdots Y(\AA)$	$X-\mathrm{H} \cdots Y\left({ }^{\circ}\right)$
$\mathrm{N}(8)-\mathrm{H}(8) \cdots \mathrm{O}(18)$	$2 \cdot 02(2)$	$2 \cdot 646(3)$	$135(2)$
$\mathrm{N}(8)-\mathrm{H}(8) \cdots \mathrm{Cl}$	$2 \cdot 85(2)$	$3 \cdot 433(2)$	$131(2)$
$\mathrm{N}(14)-\mathrm{H}(14) \cdots \mathrm{Cl}$	$2 \cdot 33(2)$	$3 \cdot 118(2)$	$174(2)$
$\mathrm{N}(20)-\mathrm{H}(20) \cdots \mathrm{Cl}^{1}$	$2 \cdot 39(2)$	$3 \cdot 103(2)$	$169(2)$
Symmetry code: $(\mathrm{i})-x, y+\frac{1}{2},-z+\frac{3}{2}$			

The authors wish to thank W. Jottier for his valuable discussions and J.-P. Vancuyck for his help with the preparation of the figure. The authors are also indebted to Delagrange International, Paris, France, for supplying the title compound.

References

Blaton, N. M., Peeters, O. M., De Ranter, C. J., Denisoff, O. \& Molle, L. (1981). Cryst. Struct. Commun. 10, 833-838.
Blaton, N. M., Peeters, O. M., De Ranter., C. J., Denisoff, O. \& Molle, L. (1982). Cryst. Struct. Commun. 11, 1357-1362.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Enraf-Nonius (1982). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Kebabian, J. W. \& Calne, D. B. (1979). Nature (London), 277, 93-96.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercy, J.-P. \& Woolfson, M. M. (1982). multan82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pfafferott, G., Oberhammer, h., Boggs, J. E. \& Caminati, W. (1985). J. Am. Chem. Soc. 107, 2305-2309.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wägner, A., Stensland, B., Csöregh, I. \& De Paulis, T. (1985). Acta Pharm. Suec. 22, 101-110.

Acta Cryst. (1990). C46, 669-671

2,3,6,7-Tetrahydro-9-methyl-1 H,5H-quinolizino $[9,1-g h]$ coumarin

By K. Chinnakali, K. Sivakumar and S. Natarajan
Department of Physics, Anna University, Madras 600 025, India

(Received 5 May 1989; accepted 19 July 1989)

Abstract. 2,3,6,7-Tetrahydro-9-methyl- $1 \mathrm{H}, 5 \mathrm{H}, 11 \mathrm{H}$ -pyrano[2,3-d]benzo[1,2,3-ij]quinolizin-11-one, $\mathrm{C}_{16} \mathrm{H}_{17} 7^{-}$ $\mathrm{NO}_{2}, M_{r}=255 \cdot 32$, monoclinic, $P 2_{1} / a, a=8.253$ (2), $b=15 \cdot 660(7), c=10 \cdot 112(4) \AA, \beta=95 \cdot 82(3)^{\circ}, V=$ $1300 \cdot 2(6) \AA^{3}, Z=4, D_{m}=1 \cdot 315, D_{x}=1 \cdot 304 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=0.80 \mathrm{~cm}^{-1}, \quad F(000)=$ $544, T=296 \mathrm{~K}$. The final R value is 0.065 for 1020 observed reflections. The coumarin moiety is planar and the two piperidine rings adopt flattened halfchair conformations with mean absolute torsion angles of 24.6 and 28.8° respectively.

Introduction. Coumarin derivatives having an amino group in the 7-position are very efficient laser dyes in the blue and green region of the spectrum (Drexhage, 1973). The mobility of the amino group reduces the fluorescence efficiency of these dyes in polar solvents (Tuccio, Drexhage \& Reynolds, 1973; Reynolds \& Drexhage, 1975) but, with a structurally rigid amino group, these derivatives show a high quantum yield of fluorescence in polar solvents. The title compound (I), which is such a derivative, is found to have

0108-2701/90/040669-03\$03.00
excellent laser efficiency at 480 nm (Marling, Hawley, Liston \& Grant, 1974; Reynolds \& Drexhage, 1975). The structural study of this compound was performed to understand the groundstate conformation of the fused quinolizine ring system.

(I)
(C) 1990 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, distances and angles involving H atoms and details of least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52482 (39 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

